

Science Stars: 5th grade Lesson Plan

Lego Molecules

Standards

1.b. Students know all matter is made of atoms, which may combine to form molecules.

d. Students know that each element is made of one kind of atom and that the elements are organized in the periodic table by their chemical properties.

Suggested Time Allotment: 45 minutes Pressed for time: 20 minutes

Introduce chemical formulas of common compounds, model how to build molecules, explain how to complete the worksheet, and have LEGOS available to students for to investigate independently.

Anticipatory set (engage):

What are all these things listed on the Periodic Table? What's the smallest piece of an element? Can you have an atom of pizza? Can you have an atom of gold? What happens when different kinds of atoms come together?

Objective:

Students use chemical formulas for common compounds to experiment with how atoms come together to make molecules with unique properties and characteristics.

Materials:

LEGOS – Blue, yellow, red, black, white, and green (HINT: use ONLY one size of LEGO to represent one atom.) Periodic table of Elements for reference *Molecules and Compounds* worksheet

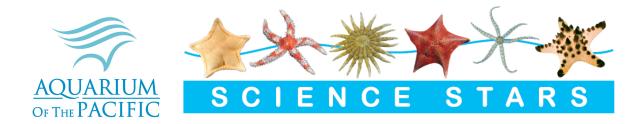
Prep:

Using the chemical formulas as a guide, prepare the correct number of LEGOS for each group to create their assigned molecule. Include one green and one white LEGO so each group can create a salt (NaCl) molecule and an extra yellow and 2 extra red LEGOS so they can create a carbon dioxide (CO_2) molecule.

Background:

A chemical compound is a combination of two or more different elements that are bonded together and take on new physical and chemical properties from the individual elements. For example, rust is a chemical compound of iron and oxygen. Similar to how scientists write a chemical symbol for a single element, compounds are written as chemical formulas. A chemical formula identifies each element by its chemical symbol and indicates the number of atoms of each element in that compound. If a molecule of a certain compound contains more than one atom of a particular element, this quantity is indicated using a subscript number after the chemical symbol. For example, the chemical formula for rust (or iron oxide) is Fe₂O₃; which is made up of 2 atoms of iron (Fe) and 3 atoms of oxygen (O). When elements join to form compounds, they lose their original properties and take on new ones. Once combined into iron oxide, the individual iron (which is shiny) and oxygen (which is a gas) molecules lose their original properties and take on new ones; thus creating a new compound called rust (which is a fragile, dull, solid compound).

Vocab:


• Chemical formula

- Compound
- Molecule

Modeling 1:

- 1. Model how to make a compound by using salt as an example.
- 2. Find the chemical formula for salt on the Molecules and Compounds worksheet.
- 3. Using the periodic table of elements, locate Na and Cl. Explain that using the chemical formula as a guide, we know that a salt molecule is made of one sodium atom (Na) and one chlorine atom (Cl)
- 4. Create a salt molecule by putting 1 green and 1 white LEGO together. (At this point in the learning process, students don't need to worry about how the *LEGOS are put together. They can be stacked together in any arrangement.)*
- 5. Model how to identify the atoms within a more complex molecule like emerald (Be₃Al₂SiO₆) using the periodic table to determine the type and number of atoms are in an emerald molecule. (3 Beryllium, 2 Aluminum, 1 Silicon, and 6 oxygen for a total of 12 atoms.)
- 6. If needed, have students create another simple molecule such as carbon dioxide (CO_2)
- 7. Model how to complete the first box on the worksheet.

- Atom
- Periodic Table

Guided Practice 1:

- 1. Working in pairs, students will assemble a unique molecule using the appropriate LEGOS, the name of the molecule, and its chemical formula.
- 2. Have the students fill in the blanks in the first box of the worksheet. List the compound's name, its chemical formula, and how many of each type of atom.

Check for understanding:

Check student's work to make sure they have correctly counted the atoms for each molecule. What type of atom is the blue LEGO? How did you know how many to put together for your molecule? What elements make up sugar? How are sugar and vitamin C similar? How are they different?

Modeling 2:

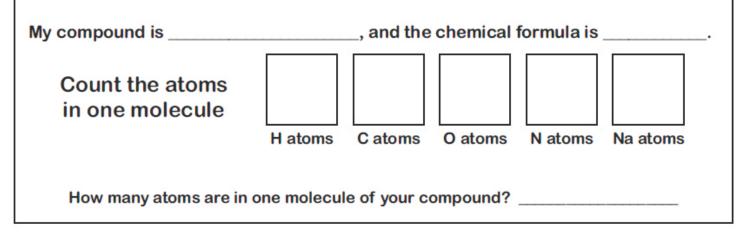
- 1. Model how to determine the identity of a mystery molecule by counting and identifying the atoms.
- 2. Model how to complete the second box of the worksheet by counting atoms, writing out the chemical formula, and finding the name of the compound.

Guided Practice 2:

- 1. Students will swap molecules with neighboring groups and identify the "mystery molecule."
- 2. After carefully counting atoms, they should correctly identify the new compound.

Check for understanding:

How many atoms make up an aspirin molecule? If you took away a hydrogen atom would you still have the same compound?


Independent practice: Have students "collect" compounds and elements that they find in everyday life in a "Molecule and Atom Book." For each entry in the journal, students can record information such as atomic number, symbol, chemical formula, where it's found, and a drawing.

Molecules and Compounds 🔆 Worksheet

Atoms - Building Blocks Color Chart

Chemical Formula of Common Compounds

Hydrogen (H) Carbon (C) Oxygen (O) Nitrogen (N) Sodium (Na) Chlorine (Cl)	Blue Yellow Red Black White Green	Sand Sugar Rust Gasoline Salt Water	SiO_2 $C_6H_{12}O_6$ FeO_3 C_8H_{18} $NaCl$ H_2O	Aspirin Advil Baking Soda Ruby Emerald Caffeine	AI_2O_3 $Be_3AI_2SiO_6$ $C_8H_{10}N_4O_2$
		Vitamin C	$C_6H_8O_6$	Peppermint	

Now to determine the identity of a mystery compound, we must count the number and types of atoms in a molecule.

Count the atoms in one molecule	H atoms	C atoms	O atoms	N atoms	Na atoms							
How many atoms are in one molecule of your compound?												
The chemical formula of the mystery compound is,												
which means it can only be												

If you take away any atom from one of the molecules, will it still be the same compound?

Elements	and	th	e Pe	eriodic	Table 🐃	敛	Pages	for	Ato)ms	& Molecules Book	
Element:	Symbol:	Atomic Number:	Group:	Where it's found:	(Don't forget to include a picture)		Compound:	Formula:	Made of:	Where it's used:	(Don't forget to include a picture)	
Element:	Symbol:	Atomic Number:	Group:	Where it's found:	(Don't forget to include a picture)		Compound:	Formula:	Made of:	Where it's used:	(Don't forget to include a picture)	

	50			2				-			~	_			0			-							
	Helium 2 He	10	Ne	20.179	argon 18	Ā	39.984	kryptoi	36	z	83.796	xenon	54	×	131.29	radon	86	R	[222]						
		fluorine 9	L.	18.9984	chlorine 17	ច	35.453	bromine	35	'n	79.904	iodine	53	-	126.9045	astatine	85	At	[210]						
		oxygen 8	0	15.9994	sulfur 16	S	32.065	selenium	34	Se	78.96	tellurium	52	Te	127.60	polonium	84	Ъ	[209]					ytterbium	20
		nitrogen 7	z	14.00674	phosphorus 15	٩.	30.97376	arsenic	33	As	74.9216	antimony	51	Sb	121.760	bismuth	83	ā	208.980					thulium	69
		carbon 6				Si								Sn							114	Uuq	[289]	erbium	89
		boron 5	۵	10.811	aluminum 13	A	26.981538	gallium	31	Ga	69.723	indium	49	<u>ء</u>	114.818	thallium	81	F	204.3833					holmium	67
2								zinc	30	z	65.409	cadmium	48	ပိ	112.411	mercury	80	Hg	200.59	ununbium	112	Uub	[285]	dysprosium	99
		t name number	lod	weight				copper	29	ບີ	63.546	silver	47	Ag	107.8682	gold	6/	Au	196.96655	roentgenium	111	Rg	[272]	terbium	65
	Key:	element name atomic number	symbol	atomic weight				nickel	28	ī	58.6934	palladium	46	Pd	106.42	platinum	18	£	195.078	darmstadtium	110	ß	[271]	gadolinium	64
								cobalt	27	ပိ	58.9332	rhodium	45	R	102.9055	iridium	11	<u>-</u>	192.217	meitnerium	109	¥	[268]	europium	
												-		Ru					- 1				- 1	samarium	62
								manganese	25	Ē	54.93805	technetium	43	ř	[96]	rhenium	75	Re	186.207	bohrium	107	뮵	[264]	promethium	61
5								E		ັວ	51.9961	molybdenum	42	Mo	95.94			≥	183.84	seaborgium	106	Sg	[266]	presect/mium neodymium promethium	60
	Metals Non-Metals Noble Gases							vanadium	23	>	50.9415	niobium	41	qN	92.906			Га	0.9479	bnium	105	ദ	262]	preseodymium	59
	Metals Non-Metals Noble Gase							titanium	22	F	47.867	zirconium	40	Ż	91.225	hafnium	12	Ŧ	1.00794	rutherfordium	104	٦ ۲	[261]	E	28
								scandium	21	Sc	44.95591	yttrium	39	≻	88.90585	Iutetium	11	Ξ	174.967	lawrencium	103	5	[262]	lanthanum	57
		beryllium 4	Be	9.012182	magnesium 12	Mg	24.3050	calcium	20	ca	40.078	strontium	38	ş	87.62	barium	56	Ba	137.327			Ra			
	hydrogen 1.00794	lithium 3	:			Na		_			39.0983	rubidium	37	Rb	85.4678	caesium	55	S	132.90545	francium	87	ŗ	[223]		
		107																							

Notes: Elements with atomic weights in square brackets have no stable isotopes. Different sources list different atomic weights for elements. The difference arises from the dif-266. The most stable isotope appears have an atomic weight of 266 so we list that weight here. Roentgenium is still the unofficial name of element 111 but it is the one recom-mended by the IUPAC so we list it here instead of the generic 'unununium'. Aluminum, cesium, and sulfur are the American spellings for aluminium, caesium, and sulphur. fering atomic weights of various isotopes. We have tried to list the most stable isotope. For example, some sources list the atomic weight of seaborgium as 263 and others This table was downloaded from http://www.science-teachers.com/printable_periodic_tables.htm.

173.04 nobelium 102 å

168.934 Е

> 167.259 100 I E

164.930 운

158.9253 kelium ٩ ۲

6d 157.25 curium 96

ericium 151.964 Eu

95

utonium 94

unium

[145] 93

140.90765

140.116 ဗီ

> 138.9055 actinium 89

La

orium 8

91

Sm 150.36

Pa

PZ 144.24 ranium

ч

fornium DY 162.50

ш

No [259]

Md [258] 101

[257]

ES 66

251] 251]

B 97

> g [247]

Am [243]

Pu [244]

Np

238.0289

231.0359 Ра

232.038

Molecules and Compounds 🛒 Worksheet Atoms - Building Blocks Chemical Formula of **Color Chart Common Compounds** Hydrogen (H) Blue Sand SiO₂ Aspirin $C_9H_8O_4$ Carbon (C) Yellow Sugar $C_{6}H_{12}O_{6}$ Advil $C_{13}H_{18}O_{2}$ Oxygen (O) Red Rust FeO₃ Baking Soda NaHCO₃ Nitrogen (N) Black C₈H₁₈ Gasoline Ruby Al₂O₃ White Sodium (Na) Be₃Al₂SiO₆ Salt NaCl Emerald

Water

Vitamin C

Chlorine (Cl)

Green

, and the chemical formula is $NaHCO_3$ **Baking Soda** My compound is 3 Count the atoms 1 1 \mathbf{O} in one molecule H atoms C atoms O atoms N atoms Na atoms 6 How many atoms are in one molecule of your compound?

H₂O

 $C_6H_8O_6$

Caffeine

Peppermint C₁₀H₇O

 $C_8H_{10}N_4O_2$

Now to determine the identity of a mystery compound, we must count the number and types of atoms in a molecule.

H atoms C atoms O atoms N atoms Na atoms How many atoms are in one molecule of your compound? The chamical formula of the muster compound is $C_{10}H_70$	Count the atoms in one molecule710100													
How many atoms are in one molecule of your compound?		H atoms	C atoms	O atoms	N atoms	Na atoms								
$C_{10}H_{7}O$	How many atoms are in one molecule of your compound?18													
The chemical formula of the mystery compound is,														
which means it can only bePeppermint														

If you take away any atom from one of the molecules, will it still be the same compound?

ements	and	th	e Pe	rio	dic	Table 🦈	Pages	for	Ato	ms	& M	olecules B	Book
Element: Gold	symbol: AU	Atomic Number: 79	Group: metal	Where it's found:	i coins, jewelry	(Don't forget to include a picture)	Compound: Vitamin C	Formula: C ₆ H ₈ O ₆	Made of: carbon, hydrogen, oxygen	Where it's used:	l oranges, vitamins	(Don't forget to include a picture)	
Element: Neon	symbol: Ne	Atomic Number: 10	Group: noble gas	Where it's found:	Las Vegas, signs	(Don't forget to include a picture)	Compound: Water	Formula: H ₂ 0	Made of: hydrogen, oxygen	Where it's used:	drinking, washing, cooking	(Don't forget to include a picture)	

Elements and the Periodic Table Pages for Atoms & Molecules Book